The pineal gland is your mind’s eye,

it welcomes what you see and reacts to it...

The Power of the Pineal Peptide

Back in the 1980’s, a colonel in the Soviet army Medical Corps was assigned a seemingly impossible, though intriguing task: to come up with a way to protect troops against the risks of modern military weapons, (such as a blinding battlefield laser or radiation exposure) while at the same time regenerate damaged organs and tissues in the event of injury.

What he discovered, through experiments supported by the generous funding of the Soviet military, was that certain naturally-produced substances, later termed ‘peptide bioregulators,’ (that were isolated from various animal tissues and organs), have the capacity to act at the genetic level to regenerate tissue and restore the function of the corresponding organ(s) in other animals or in humans.

As a by-product of their rejuvenating properties, these biologically active short chains of amino acids were also discovered to act as so-called ‘geroprotectors’ (therapeutics that target the root causes of aging and age-related diseases), with impressive longevity-promoting potential.

Once a military secret in the 1980’s, a wealth of subsequently-published research has demonstrated that peptide bioregulators restore physiological balance, prevent age-related diseases, increase life span and more.

Each peptide restores the function of a specific organ

In the early days of his research, the then Soviet colonel, Dr. Vladimir Khavinson, developed a method for the isolation, purification and fractionation of low-molecular-weight peptides from extracts of different bovine-sourced organs and tissues such as the pineal gland, thymus, hypothalamus, retina, endocrine glands and liver etc.

These  amino-acid chains are endogenously produced in the cells of healthy tissues and play a regulatory role, from the molecular and cellular levels to the overall biochemical and physiological functioning of the particular organ in which they are manufactured (hence, the designation ‘peptide bioregulator’).  They are literally the ‘building blocks of life’ and are normally sourced via food. When two amino-acids connect, then they become known as a di-peptide. Today, many biologists consider this moment to infer the ability of ‘biological information’ to be transferred.

Peptide bioregulators are unique in that they unlock ‘reserves’ that your body naturally holds back- your body typically keeps 42% in reserve, ensuring that your body is working at its optimal level.

The pineal peptide extends telomere length

Perhaps even more compelling, Epithalamin activates the telomerase gene and lengthens telomeres ─ (see figure 1) further evidence of its longevity-promoting potential.

Aging is associated with a decrease in the proliferative capacity of cells (i.e., the ability of cells to divide, necessary for the construction and repair of tissues) due to the progressive shortening of structures called telomeres. Telomeres are the protective ‘caps’ at the ends of chromosomes that maintain their structural integrity and telomerase is an enzyme that adds repetitive DNA sequences to the telomeric ends of chromosomes each time a cell divides (during cell division, portions of DNA are lost due to an inherent problem of incomplete end-replication; telomerase ensures the complete copying of DNA repeats).

Most of the body’s cells (excluding reproductive cells) can divide only a finite number of times according to a programmed genetic clock that results in decreased telomerase production with increasing age, leading to shortened telomeres and arrested cell division. This process, known as replicative senescence, ultimately leads to aging and age-related diseases.

Khavinson found that the addition of Epithalamin to cultured human cells activated the telomerase gene to synthesize telomerase, resulting in lengthened telomeres and an increased number of cell divisions. (16, 17) This is another example of the molecular mechanism of peptide-DNA complexing which results in the synthesis of a protein, in this case the ‘immortalizing’ enzyme telomerase. According to Professor Khavinson; “these results indicate the possibility of prolonging the life span of a cell population and of the whole organism” (16) ─ an intriguing and exciting prospect.

All of these mechanisms – normalization of endocrine function, immune enhancement, cancer inhibition and telomerase activation – underlie the pineal peptide’s pronounced geroprotective, or antiaging effects. Studies specifically on longevity demonstrate increased life span in drosophila, (2,5) mice, (5) and rats (16) when administered Epithalamin and it follows that this effect is mimicked in humans. Undoubtedly, the peptide bioregulator is one of the most innovative and effective antiaging therapies developed in the past few decades. We can now take advantage of these fascinating physiologically-active short peptides ─ including the pineal version ─ to rejuvenate age-damaged organs and extend the quality and quantity of our senior years.

The influence of pineal gland Endoluten preparations on telomere length in patients’ blood cells

Age, years
Investigation
Telomere length (b.p.)
60-65
Initial Value
9,43±1,12 (n=21)
After Treatment
10,62 ± 1,32*
75-80
Initial Value
7,63±0,98 (n=18)
After Treatment
8,66 ± 1,21*

* – p< 0,05 as compared to initial value

Figure 1: Professor Khavinson’s experiments show that all versions of the pineal peptide extend telomere length. These are blood samples taken from patients from the age of 60 to 80. Data on file: Laboratory of Biogerontology of the St. Petersburg Institute of Bioregulation and Gerontology.

References

  1. Anisimov V.N., Khavinson V.Kh. Peptide bioregulation of aging: results and prospects. Biogerontology. 2010;11:139-149.
  2. Khavinson V.Kh., Anisimov V.N. Peptide Regulation of Aging: 35-Year Research Experience. Bulletin of Experimental Biology and Medicine. 2009;148:94-98.
  3. Khavinson V.Kh., Kuznik B.I., Ryzhak G.A. Peptide Bioregulators: A New Class of Geroprotectors. Message 1: Results of Experimental Studies. Advances in Gerontology. 2013;3(3):225-235.
  4. Khavinson V.Kh., Lin’kova N.S., Trofimov A.V., Polyakova V.O., Sevost’yanova N.N., Kvetnoy I.M. Morphofunctional Fundamentals for Peptide Regulation of Aging. Biology Bulletin Reviews. 2011;1(4):390-394.
  5. Khavinson VKh. Peptides and Ageing. Neuro Endocrinol Lett. 2002;23 Suppl 3:11-144.
  6. Khavinson V.Kh., Solov’ev A.Yu., Zhilinskii D.V., Shataeva L.K., Vanyushin B.F. Epigenetic Aspects of Peptide-Mediated Regulation of Aging. Advances in Gerontology. 2012;2(4):277-286.
  7. Khavinson V.Kh., Tarnovskaya S.I., Linkova N.S., Pronyaeva V.E., Shataeva L.K., Yakutseni P.P. Short Cell-Penetrating Peptides: A Model of Interactions with Gene Promoter Sites. Bulletin of Experimental Biology and Medicinegr2013;154(3):403-408.
  8. Goncharova N.D., Lapin B.A., Khavinson V.Kh. Age-Associated Endocrine Dysfunctions and Approaches to Their Correction. Bulletin of Experimental Biology and Medicine. 2002;134(5):417-421.
  9. Goncharova N.D., Vengerin A.A., Khavinson V.Kh., Lapin B.A. Pineal peptides restore the age-related disturbances in hormonal functions of the pineal gland and the pancreas. Experimental Gerontology. 2005;40:51-57.
  10. Khavinson V.Kh., Razumovsky M.I., Trofimova S.V., Razumovskaya A.M. Retinoprotective Effect of Epithalon in Campbell Rats of Various Ages. Bulletin of Experimental Biology and Medicine.2003;135(5):495-498.
  11. Khavinson V., Razumovsky M., Trofimova S., Grigorian R., Razumovskaya A. Pineal-regulating tetrapeptide epitalon improves eye retina condition in retinitis pigmentosa. Neuroendocrinology Letters. 2002; 23(4):365-368.
  12. Lin’kova N.S., Kuznik B.I., Khavinson V.Kh. The Peptide Ala-Glu-Asp-Gly and Interferon Gamma: Their Role in Immune Response during Aging.  Advances in Gerontology. 2013;3(2):124-128.
  13. Rosenfeld S.V., Togo E.F., Mikheev V.S., et al. Effect of Epithalon on the Incidence of Chromosome Aberrations in Senescence-Accelerated Mice.  Bulletin of Experimental Biology and Medicine. 2002;133(3):274-276.
  14. Khavinson V.Kh., Anisimov V.N. Peptide Regulation of Aging: 35-Year Research Experience. Bulletin of Experimental Biology and Medicine.  2009.148:94-98.
  15. Kossoy G., Zandbank J., Tendler E., et al. Epitalon and colon carcinogenesis in rats: Proliferative activity and apoptosis in colon tumors and mucosa. International Journal of Molecular Medicine. 2003;12(4): 473-477.
  16. Khavinson V.Kh., Bondarev I.E., Butyugov A.A. Epithalon Peptide Induces Telomerase Activity and Telomere Elongation in Human Somatic Cells. Bulletin of Experimental Biology and Medicine. 2003;135(6):590-592.
  17. Khavinson V.Kh, Bondarev I.E, Butyugov A.A., Smirnova T.D. Peptide Promotes Overcoming of the Division Limit in Human Somatic Cell.  Bulletin of Experimental Biology and Medicine. 2004;137(5):613-616.